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Figure 5: Left: Fragmentation function for gluons onto pions at Ejet = 100 GeV. Our results are plotted
at Q2 = E2

jet, for three different mediums: vacuum (black), q̂ = 10 GeV2/fm (green) and q̂ = 50 GeV2/fm
(red) and for two different medium lengths: 2 fm (solid) and 6 fm (dashed). Right: Medium to vacuum
ratio of the gluon fragmentation functions for the same values as in the plot on the left.
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Figure 6: Left: Nuclear modification factor RAA computed with the obtained medium-modified fragmen-
tation functions for a fixed in-medium path-lenght of L = 6 fm. Right: Same but computed with more
realistic geometries leading to a distribution of path-lenghts over which the suppression is averaged. In
both cases, the experimental data is taken from [38].

This model assumes that a highly energetic parton losses a fractional amount of energy ε while
traveling through the medium and fragments with un-modified (vacuum) fragmentation functions
once it is outside. Any modification of the virtuality dependence of the fragmentation is neglected
and the probability distribution for the energy losses - quenching weights - has a discrete and a
continuous part,

P (ε) = p0δ(ε) + p(ε), (4.2)

– 11 –


